Atomic Mass

1. Is atomic mass the same value as the atomic number?

No. The atomic mass is a weighted average of all isotopes of a particular element. The mass number is associated with a particular isotope.
2. How do you calculate the atomic mass of an element?

Atomic Mass =
(\% abundance of isotope 1)(mass of isotope 1) +
(\% abundance of isotope2)(mass of isotope 2) +

Include every isotope for the given element in this calculation.
3. What is the atomic mass of copper if ${ }^{63} \mathrm{Cu}$ has a mass of 62.93 amu and percent abundance of 69.09% and isotope ${ }^{65} \mathrm{Cu}$ has a mass of 64.93 amu and percent abundance of 30.91%.
$(62.93 \mathrm{amu})(0.6909)+(64.93 \mathrm{amu})(.3091)=63.55 \mathrm{amu}$
4. What are the percent abundances for ${ }^{151} \mathrm{Eu}$ and ${ }^{153} \mathrm{Eu}$ if the atomic mass of the element is 151.96 amu and the isotope masses are 150.9196 amu and 152.9209 amu respectively.

Remember that, as there are only 2 isotopes, their combined percent abundances must equal 100\%. Thus...
$151.96=(150.9196)(x)+(152.9209)(y)$

Where x equals the percent abundance (in decimal form) of ${ }^{151} \mathrm{Eu}$ and y equals the percent abundance of ${ }^{153} \mathrm{Eu}$.
$x \%+y \%=100 \%$ or $x+y=1$
so...
$151.96=(150.9196)(x)+(152.9209)(1-x)$
$\mathrm{x}=0.48 \rightarrow 48 \%$
$y=0.52 \rightarrow 52 \%$

